THE SEER PREAMPLIFIER

BY TUBE TECHNOLOGY

~ USER'S MANUAL ~

Applicable to PHONO & LINE MODEL

TT PART No. SeM-02

Printed in England 1st Edition - May 1994

Introduction

Thank you for selecting the Tube Technology Seer Preamplifier.

Please read through this manual so you will know how to operate your Seer Preamplifier properly. After you have finished reading this manual, please put it away in a safe place for future reference.

We have done our utmost in the design and build of the Seer to ensure you a low maintenance, trouble free preamplifier that will bring you many years of pleasure as an important part of your hi-fi system.

Please do not forget to complete and return the enclosed registration card.

We wish you many hours of musical enjoyment!

Contents

1.	Getting Started			
	Unpacking your Seer Pre-Amplifier	1 - 1		
2.	Mains Connection			
	Connecting The Seer to the household mains supply	2 - 1		
	Wiring a Mains Plug - UK	2 - 1		
	Earthing Arrangements	2 - 2		
3.	Installation			
	Installing & ventilation of your preamplifier	3 - 1		
4.	Audio Connection - Rear Panel	4 - 1		
	Connecting the Seer's Inputs & Outputs.	4 - 2		
5.	Operating your System - Front Panel	5 - 1		
	Switching your Seer On & Off	5 - 2		
	Front Panel Functions	5 - 2		
	Operational Notes	5 - 3		
6.	Running-In			
	Burning in your Preamplifier	6 - 1		
	Tube Information	6 - 1		
7.	Maintenance			
	Care and Cleaning of your preamplifier	7 - 1		
	Troubleshooting	7 - 3		
	Changing Mains Voltage	7 - 5		
8.	Specifications	8 - 1		
9.	Guarantee	9 - 1		
	Claims under the Guarantee	9 - 2		
10.	Tube Renaissance	10- 1		

Contents - 1

Conventions

This manual uses the following conventions;

Bold indicates emphasis or a minor heading.

Italic Bold refers to a sub heading of a chapter.

This symbol refers to Notes containing important information set off from the text.

THIS SYMBOL REFERS TO CAUTION MESSAGES AND PROCEDURES WHICH IF NOT OBSERVED CAN LEAD TO DAMAGE OR INJURY

Contents - 2

■ Unpacking your Seer Preamplifier

1 Getting Started

Unpacking

Your preamplifier is packed in "jiffy-cell" support foam. Grip the top of this foam and simply pull it out of the box. The Seer is then left sitting on its middle support and can be lifted out.,

All packing should be retained. Amplifiers returned under guarantee are only accepted in their original packaging.

The following items are included in the packaging of the Seer;

- 1 x Seer Preamplifier
- 1 x Reference Manual & Registration Card
- 1 x IEC Mains Leads (only on serial nos. 6022 and up)
- 1 x Allen Key

Your pre-amplifier is supplied with the tubes already in place. Check through the mesh windows on the top lid making sure that the (2 x LINE) (4 x PHONO) tubes have not worked free in transit.

Getting Started 1-1

Mains Connection

Mains Connection

Earthing Arrangements

This chapter contains information on;

- Connecting the Seer to the household mains supply.
- Wiring a mains plug (UK)
- **■** Earthing arrangements

Your Seer plugs into the mains supply via the IEC socket located on the back panel (*Only on Models Serial No. 6022 & onwards, models preceeding this have a flying mains lead*See diagram 1). The Seer has been factory set to the correct mains voltage for your country. The voltage setting is marked on the serial badge, located on the rear panel of the unit. (See diagram 1). Check that this voltage complies with your local supply.

When using a pre-power combination it is essential to ensure that no "earth loops" occur, this is when too many earths are connected to the mains earth, resulting in a feint low frequecy hum through the system. If neccessary you may not need to earth the preamplifier to the mains earth, consult the handbook for your power amplifier if you are unsure.

DO NOT CONNECT/SWITCH-ON THE MAINS SUPPLY TO THE AMPLIFIER BEFORE COMPLETING ALL OTHER CONNECTIONS. IF YOU ARE IN ANY DOUBT REGARDING MAINS CONNECTIONS PLEASE <u>DO NOT</u> PROCEED ANY FURTHER WITHOUT CONSULTING YOUR DEALER.

Mains Connection 2 - 1

Wiring a Mains Plug

Export units for certain markets have a moulded mains plug fitted to comply with local standards. If your mains supply lead does not have a plug fitted, the coloured wires should be connected to the appropriate plug terminals in accordance with the following code.

Wire Colour Label on Plug

GREEN/YELLOW E or EARTH or

BLUE N or NEUTRAL or BLACK

BROWN L or LIVE or RED

If your mains plug has a fuse, please fit a fuse with 5A rating.

IF YOUR SEER IS NOT SET CORRECTLY FOR THE LOCAL SUPPLY OR IF YOU INTEND TO MOVE THE AMPLIFIER TO A LOCATION WHERE THE SUPPLY IS AT A DIFFERENT VOLTAGE, IT WILL BE NECESSARY TO CHANGE THE VOLTAGE SWITCH ON THE SEER. IF THIS IS NECCESSARY PLEASE REFER TO *Changing Voltage* IN THE MAINTENANCE CHAPTER.

DO NOT SWITCH ON THE AMPLIFIERS BEFORE COMPLETING THE AUDIO CONNECTIONS.

Mains Connection

Mains Connection 2 - 2

Installation

Installing & Ventilation

This chapter contains information on;

■ Installing and Ventilation of your Preamplifier

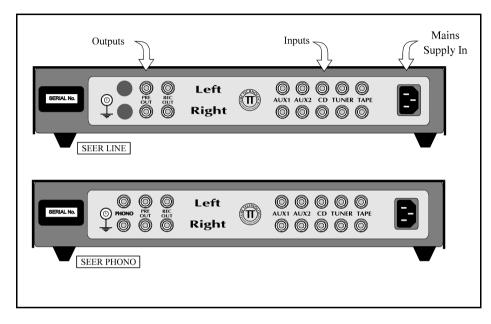
Ensure that the amplifier is placed in a stable location that is able to accept its weight the Seer weighs approx. 6 kilograms.

It is not recommended that preamplifier is installed in a cupboard or in any enclosed area if there is not sufficient air space and ventilation to keep it cool. A minimum distance of four inches above the preamplifier should be allowed as this is where most of the heat is generated. Dedicated racks are available for housing your tube equipment, contact your dealer or Tube Technology. Do not locate the preamplifier close to radiators or any other heat source, this could increase the operating temperature. Do not directly block the ventillation grilles on the top cover of the preamplifier.

Do not locate the preamplifier too close to a turntable, as the cartridge could pick up hum from the power transformer.

DO NOT SIGHT THE PREAMPLIFIER OR POWER SUPPLY NEAR WATER OR HEAVY MOISTURE, THE VENTILATION GRILLES ON THE TOP OF THE UNIT ARE AN EASY ACCESS POINT FOR MOISTURE TO ENTER.

Installation 3 - 1


Audio Connection

Rear Panel

This chapter contains information on;

■ Connecting the Seer's Inputs & Outputs

Audio Connection

Diagram 1

Audio Connection 4 - 1

Connecting the Inputs & Outputs	Your Preamplifier uses high quality connectors to ensure that maximum signal transfer is possible, therefore ensure that all cables used for connection to the preamplifier are terminated with connectors of similar quality. See Diagram 1 for Rear Panel layout.
PRE OUT	One pair of connectors are offered for the outputs Connect these outputs to the inputs of your power amplifier. If you are using directional cables ensure the arrows point away from the preamplifier. Red denotes the right channel and black the left. The quality of this interconnect is important for sonic clarity, consult your dealer if in doubt.
REC	These outputs provide an audio output suitable for connection to the RECORD input of a tape deck. The source to be recorded is selected by means of the input selector switch on the right hand side of the front panel. See Diagram 2.
GROUND	This terminal is used to ground any inteconnecting leads which have a separate ground connection.
CD	These inputs are used to connect the audio output of a digital compact disc player or any other audio hi-fi component that produces output voltage within the range 150mV-3 V.
AUX 1 TAPE	These inputs are used to connect the audio output of a tape deck or audio section of a video recorder or any other audio hi-fi component that produces output voltage within the range 150mV - 1V.
AUX 2	These inputs are used to connect the audio output of a tape deck or audio section of a video

recorder or any other audio hi-fi component that produces output voltage within the range 150mV - 1V. *If you have a PHONO SEER this input is not functional*

Audio Connection 4 - 2

7	T	IN	ומו

These inputs are used to connect the audio output of a tuner or any other audio hi-fi component that produces output voltage within the range 150 mV-1 V.

PHONO

These inputs are suitable for both moving magnet and <u>high output type</u> moving coil cartridges, with outputs in the order of plus 0.5millivolts. An external step-up device is required for use with low output moving coil cartridges. *If you have a Line Seer this input is absent.*

IEC INLET

Only on Models Serial No. 6022 and upwards.

The IEC connector on the rear panel, connects to the mains supply via the mains cable supplied.

DO NOT SWITCH-ON THE SYSTEM UNTIL YOU HAVE READ CHAPTER 5 **Operating Your System.**

Audio Connection

Audio Connection 4 - 3

Operating your System

Front Panel

This chapter contains information on;

- Switching your preamplifier ON and OFF.
- Front Panel Functions
- Operational Notes

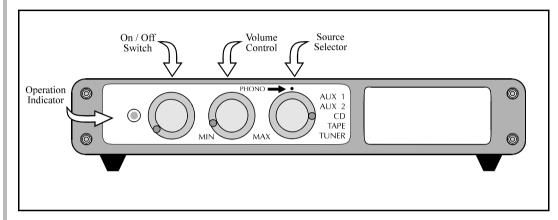
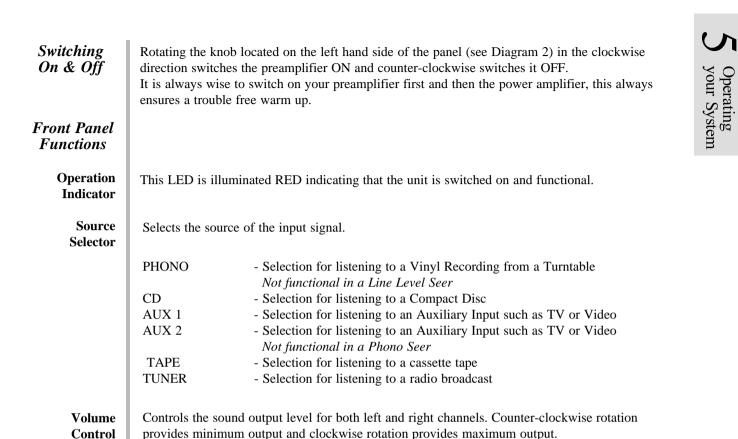



Diagram 2

Operating your System 5 - 1

Operating your System 5 - 2

Operational Notes

Some users of tube amplifiers believe that because tube amplifiers take some time to warm up that they should be left on all the time. The Seer preamplifier reaches peak performance levels 15-20 minutes after switch on. Unless absolutely necessary it is not recommended that you leave your preamplifier permanently switched on, this only wastes electricity and tube life, but if necessary the Seer premplifier is quite capable of being left switched on for very long periods of time.

Operating your System 5 - 2

Burning-In Amplifiers This chapter contains information on;

- Burning-In your Preamplifier
- Tube Information

"Burning-In" is a generic term given to the basic 'running-in' of the amplifier. You may notice a slight 'electronic-smell' from your preamplifier during the first few days of operation. This smell is usually caused by various prints and dyes used on the components which takes some time to evaporate This is quite normal and there is no need for concern as your preamplifier has been extensively soak tested before leaving the factory. This burning-in process continues with your use of the preamplifier.

This process simply allows for new components like tubes, capacitors and resistors to settle and 'sweeten' enhancing the amplifiers sonic performance. An estimated 40 hours of operation allows your Seer this running-in period.

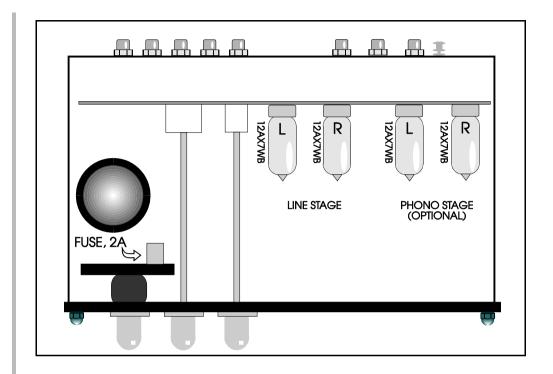
Tube Information As with all tubes, their qualities degrade with age due to cathode emission (a natural process common to all tubes) A typical life span of a twin triode signal tube as used in the Seer would be approx. 6000 hours, after which time they should be replaced, thus keeping your preamplifier at it's maximum sonic performance; Refer to the **Maintenance** chapter.

) Running In

Maintenance

Care & Cleaning

This chapter contains information on;


- Care and Cleaning of your Preamplifier
- **Troubleshooting**
- Changing Mains Voltage

All <u>polished metal parts</u> on your amplifier are unlacquered. These metal parts will in time lack lustre due to oxidisation. They can easily be restored to original condition by using a mild metal polish (such as duraglit) and a soft polishing cloth. Do not clean the polished parts with water as this smears the surface and can leave water marks.

<u>Anodised parts</u> such as the front panel and top covers of the Seer & painted parts such as the bottom cover are best cleaned with a damp cloth then buffed with a dry cloth. DO NOT apply any kind of polish. For very stubborn marks a mild solvent such as methylated spirits can be applied.

ENSURE THAT THE UNITS HAVE BEEN DISCONNECTED FROM THE MAINS BEFORE COMMENCING ANY CLEANING OPERATIONS.

Diagram 3

/ Maintenance

WARNING ELECTRIC SHOCK HAZARD - HIGH VOLTAGES EXIST WITHIN THE EQUIPMENT EVEN AFTER THE UNIT HAS BEEN DISCONNECTED FROM THE MAINS SUPPLY.

Troubleshooting

SYMPTOM

Preamplifier switches on but there is no sound from the system.

Preamplifier does not switch on

With volume at zero hum is present

When looking in the top window of the preamp, a tube seems to have gone milky white, it does not light up when the unit is switched on

1. Look in the top window of the preamp to see if the tubes are glowing, this is an indicaton that the power supply is operating the preamp.

REMEDY

- **2**. Ensure you have connected the outputs of the preamp to the inputs of your amplifier.
- **1**. Ensure IEC plug on the mains lead is a snug fit into the IEC connector on the rear panel.
- **2.** Check the mains fuse located inside the fuse holder next to the switch. Disconnect mains connector before changing fuse. see diagram 3.
- **1.** Check that the the earthing arrangements are correct see chapter **2.** Only one amplifier component should go to the mains earth.
- 1. The vacuum of this tube has escaped through a small crack in the glass. When inserting tubes into their sockets, place a finger behind the socket ensuring the pcb does not flex and the tube fits into the socket with little stress. Stress at the base of the tube around the pins can cause tiny fractures in the glass which develop in time.

After replacing a tube, with the volume mid-way, I can hear my hand touching the preamplifier through the loudspeakers, like an echo.

After de-selecting an input I can still hear it in the background.

- 1. The tube you have replaced is 'microphonic'. This is particularly noticeable if the tube has been fitted in the phono stage.
- **2.** Change the tube for another.

1. This is caused by breakthrough on the selector switch, it cannot be avoided, unless complicated sound degrading circuitry is employed. The best advice is to switch of the offending signal, this is particularly true for tuners which are often left on.

/ Maintenance

UNDER NO CIRCUMSTANCES SHOULD AN UNQUALIFIED PERSON REMOVE THE COVERS OF AN AMPLIFIER. IF IN DOUBT PLEASE CONSULT YOUR DEALER OR TUBE TECHNOLOGY.

Changing Mains Voltage

The voltage on the Seer is switchable from 120V to 240V.

The primary of the mains transformer can be changed from 120V to 240V, this is done by changing the taps on the transformer. It is recommend that only an experienced technician carries out this task, or refer to Tube Technology. See diagram 4.

This is done by turning the switch located at the base of the Prophet Power supply to the desired position. A large coin is best used for this task.

Settings

240V / 220V

Red & Org LINK, Blk & Blu to switch

120V / 110V

Blk & Org LINK - pair to switch Red & Blu LINK - pair to switch

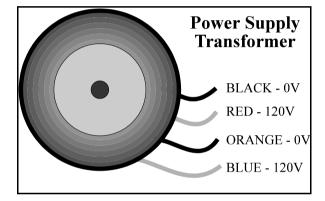


Diagram 4

Specifications

Figures given below are for a typical Seer Pre Amplifier

Vacuum Tubes ECC83/12AX7WB x 2 (LINE), x 4 (PHONO)

Output Voltage 5V max @ 300mV in

Frequency Response LINE- 5Hz - 120 KHz @ 1W +/- 0.001dB

PHONO - 30 Hz - 30KHz +/- 3dB

Input Sensitivity LINE - 300 mV (output 1V)

PHONO- 0.50mV, 150pF (output 1V)

Input Impedance LINE - 200 Ohms

PHONO - 47 KOhms

Power Consumption Quiescent = 28 watts

Voltage 110V, 120V, 220V, 230V, 240VAC

Dimensions 350 (W) x 250 (D) x 65 (H) mm

Weight 5.5 Kg,

Specifications 8 - 1

Guarantee

Guarantee

This chapter contains information on;

- The Guarantee of your Seer Preamplifier
- Tube Guarantee
- Registration
- Claims under this Guarantee

This equipment has been fully tested and a full record of these tests made before despatch from the factory. Both the workmanship and the performance of this equipment are (*except as set out below) guaranteed against defects for a period of TEN YEARS from the date of purchase, provided that it was originally purchased from an authorised dealer under a consumer sale agreement, at or near the recommended retail price. (The words "consumer sale" shall be construed in accordance with section 15 of the Supply of Goods (Implied Terms) act 1973).

This guarantee covers both labour and parts and is transferable to subsequent purchasers but the liability of the manufacturers is limited to the cost of repair or replacement (at the discretion of the manufacturers) of the defective parts and under no circumstances extends to consequential loss, damage or shipping charges.

* These amplifiers only carry a ten year guarantee if used in conjunction with a Tube Technology power-amplifier, otherwise a TWO YEAR guarantee applies.

Guarantee 9 - 1

This equipment has a SIX MONTH guarantee on the tubes allowing for any manufacturing defects to arise. If a tube is found to be defective it should be returned to the dealer or failing this, directly to Tube Technology packed in its original packaging.

The manufacturers can accept no responsibility for defects arising from accident, misuse, wear and tear, neglect or through unauthorised adjustments and or repair, neither can they accept responsibil-

ity for damage or loss occurring during transit to or from the person claiming under this guarantee.

Registration

Please complete the registration card and return it to Tube Technology. **Your guarantee is invalid without registration.** To transfer this guarantee to subsequent purchasers, the new owner must notify Tube Technology of their name, address and serial numbers of the equipment.

Claims under this Guarantee This equipment should be packaged in the original packaging and returned to the dealer from whom it was purchased or, failing this, any other authorised Tube Technology dealer. If it is not possible to return the equipment by hand then it should be sent carriage prepaid by a reputable carrier. Should the original packaging not be available replacement packaging can be purchased from the manufacturers. The equipment should not be sent by post.

DO NOT CONSIGN THE EQUIPMENT TO TUBE TECHNOLOGY UNLESS YOU HAVE FIRST BEEN SPECIFICALLY REQUESTED TO DO SO BY THE MANUFACTURERS TECHNICAL SERVICE DEPARTMENT. DO NOT UNDER ANY CIRCUMSTANCES ATTEMPT TO DISASSEMBLE THE EQUIPMENT BEFORE DESPATCH.

Guarantee 9 - 2

If you have any difficulty complying with these requirements, please contact the manufacturers at the following address:

TUBE TECHNOLOGY COMPTON HOUSE DREFACH CARMARTHENSHIRE SA14 7BA UK

Tel: +44 (0) 1269 844771 Fax: +44 (0) 1269 833538

In either case you should state clearly your name and address, the date and place of purchase together with a brief description of the fault experienced. In the event of equipment being returned which on test is found to comply with the published specifications the manufacturers reserve the right to charge a reasonable fee for testing the equipment and for return carriage.

The manufacturers are happy to answer any queries you may have regarding the use of this equipment on the condition that this enquiry is by letter. You should state clearly the serial number of the unit, the dealer from whom it was purchased and the date of purchase.

THIS GUARANTEE IN NO WAY VARIES OR REMOVES A PURCHASERS STATUTORY RIGHTS.

Guarantee 9 - 3

Tube Renaissance

Tube Renaissance

A possible expalnation of why tubes may sound better than transistors.

From the late 1960's, tubes were largely, though not entirely, superceded by semiconductors in audio frequency amplifier designs. This was an inevitable consequence of a continuing quest for new techniques. Semiconductors (Transistors and Integrated Circuits) have certain and obvious advantages: their small size, absence of heaters, low voltage operation and consequent opportunity to dispense with output transformers may appear to make tubes obsolete. However, from about 1975 onward, there has been a resurgence of interest in tubes; and it seems worthwhile to consider why.

It is said by 'hi-fi' enthusiasts that tube amplifiers sound better, that their distortion is either lower or less noticable. Carefully conducted listening tests seem to bear this out, although their results are difficult to interpret. If there really are subjective differences to a listener between tubes and semiconductor amplifiers, can they be explained technically?

One thing should be clearly understood: it is possible to design either a tube or a semiconductor amplifier so that over a certain range of output power its distortion will be so small as to be imperceptable to the ear. Therefore, if two similarly rated well-designed high fidelity amplifiers, one using tubes and the other using semiconductors, are compared in the same listening conditions, correctly operated, their performance should be indistinguishable - and subjectively perfect.

Now, on the basis of measured performance, many modern high fidelity semiconductor amplifiers are actually superior to the older tube amplifiers, which were already good enough for their distortion tobe imperceptable; so how can here be subjective differences? It seems that there cannot be any, while the amplifiers are correctly operated: and this may be the key to the mystery, for there are two major problems: one is that it is extremely difficult to avoid occasional over driving of an amplifer, because of the very

large dynamic range of the audio signal; and the other is that the loading is not always resistive. It is under these (usually unintentional) wrong conditions that differences may show up.

Let us consider the over driving first. Owing to continual improvements in recording and playback technique, the possible dynamic range of music signals- from either disc or tape - is greater now than it used to be. As a tentative estimate, it appears that the loadest passage of a modern disc recording maybe 40dB above the average sound level. Now it may be said that amplifiers in a high fidelity system ought theoretically to be able to reproduce the loudest of loud bursts without distortion. However, to allow for 40dB above 50mW - not a very high listening level - a power capability of 500W would be required; and further developments may make the figure even greater. One seems to hear a cry of "where is it all going to end?" Anyway, when setting up an amplifier system one adjusts the gain to give the prefered average

sound level. One has no way in advance of knowing in advance whether there is an exceptionally loud passage coming that will over drive the amplifier. Bursts in excess of 30dB above the average are quite rare.

If we accept, then, that occasional over driving is virtually inevitable, how will the amplifier behave? We now come to the first possible reasons why tubes and semiconductors may "sound different".

Presented with an over large signal, tubes merely clip the peaks, delivering a flat-topped waveform while the over driving is taking place. The limiting may occur at the grid as the circuit resistances are commonly such as to prevent it from being driven more than slightly positive, or it may be the results of coalescence of characteristic curves at lower voltages. The ear is surprisingly tolerant of such clipping when it occurs only on these occasional load bursts.

The semiconductors used in audio amplifiers are virtually always bipolar transistors, either discrete or integrated. They require base

current to be applied in order to make collector current flow. Now transistor amplifiers normally incorporate a large amount of negative feedback, and, when such an amplifier limits, some of its stages are driven very hard, so that extra large base currents are drawn. If any capacitors are affected by such current pulses, the result may well be that a brief over driving is followed by a comparatively long recovery signal, which would be much more noticeable than mere clipping of peaks. Even with dc coupling, there may still be capacitors that can cause such extra signals.

There is a further effect that takes place in the transistor itself, because of the phenomenon of charge storage. A transistor that has been conducting does not switch off immediately when the forward base bias is removed, but continues to take collector current until all the relevant charge carriers that are in transit have been swept out. The effect is most pronounced in a transistor that has been turned on hard: in fact the larger the base current the longer will

be the turn-off time. In audio transistors that have been over driven this time may be of the order of hundreds of microseconds, so this effect can also give rise to spurious signals.

When it is realised that even the most critical listener cannot detect peak clipping of occasional short loud bursts by as much as 6dB, we can understand why it is sometimes said that a 50W tube amplifier can sound equal to some 200W transistor amplifiers. A tube amplifier can be quite grossly over driven with little or no subjective effect on sound quality, whereas most transistor amplifiers probably cannot.

The other kind of unintentional wrong operation we have to consider is incorrect oading. The impedance of a loudspeaker system is by no means constant: a so-called 8 ohm system may well present anything from 4 to 16 ohms over the audio frequency range, and be highly reactive at some frequencies. It is under reactive load conditions with large signals that another major difference appears between tubes and transistors. The combina-

tion of simultaneous high voltage drop and high current occurring for brief periods at certain parts of the elliptical load line does not normally affect tubes, may cause a catastrophic second breakdown effect, in which a permanent short circuit develops - not to be confused with ordinary avalanche break down, which is a reversible phenomenon.

The risk of second break down may be avoided by using transistors with sufficiently high ratings to be well clear of the effect, if available; but the alternative commonly employed is to incorporate protective circuitry that cuts the signal whenever the output transistors are subject to a dangerous combination of voltage and current, and this obviously has a very unpleasant effect on the sound. The purpose of these remarks is not to denigrate transistor amplifiers, but to present a case for tubes, and to show that there may be technical reasons for the supposedly subjective effects that have been attributed to transistors. Ways may be found of eliminating or obviating these effects in a transistor

amplifier design; but there is a simplicity about tube circuitry which may appeal to many audio engineers, both professional and amateur.

A further point can be made in favour of tubes, concerning cooling. Output transistors have to be conduction cooled, preferably by some method that does not heat up other semiconductors in the circuit. This requires some rather bulky metalwork thermally isolated from the rest of the chassis. Glass envelope tubes, on the other hand, looses most of their heat by a mixture of convection and radiation.

A brief reference may be in order here about what is usually considered to be main disadvantage of a tube amplifier, the output transformer. It is indeed a heavy and costly item, to be set against the relative simplicity of circuit and various other advantages that have here been attributed to the tube equipment. However it can enable the amplifier to work into more than one load impedance, whilst a transformerless

semiconductor amplifier designed to drive an 8 ohm load would usually deliver only half its normal power into a 16 ohms, and might be damaged if operated with 4 ohms. Also, with an output transformer provided that it is correctly loaded, the amplifier input sensitivity without feedback is the same whatever the value of load impedance; and by taking the negative feedback connection from a fixed point on the secondary winding the sensitivity with feedback can be made similarly independent of load impedance: in other words, the number of decibels of feedback and therefore the reduction of distortion, damping factor and so on, are the same whatever the load. So there is something to be said for having an output transformer.

Perhaps enough has been said to suggest at least that the advantages are not entirely on the side of semiconductors, and that points can be made in favour of tubes, concerning both performance and convenience in use. Semiconductors may produce un-welcome effects on over driving, so difficult to avoid in

practise; and not only the output stage, but also low level stages are involved in these. Tubes have a distict advantage in operation with reactive loads, and are easier to cool. Even the need for an output transformer is not quite such an unmitigated drawback as it may sometimes seem.

These may be some of the reasons why a substantial part of the audio amplifier market has stayed with tubes during the "transistor era", and why there has recently been such a remarkable "Tube Renaissance".